Das Projekt KMR strebt an, moderne empirische Verfahren der kausalen Inferenz, des maschinellen Lernens und der reproduzierbaren Forschung in große verpflichtende Lehrveranstaltungen der Ökonometrie in wirtschaftswissenschaftlichen Studiengängen zu tragen, hier zunächst konkret die „Einführung in die Ökonometrie“ (Wintersemester, 6 ECTS) an der Universität Duisburg-Essen (UDE). Umfangreiche open source-Materialien machen die Projektergebnisse anderen Studierenden und Lehrenden zugänglich. Der Arbeitsplan des Projektes gliedert sich in die vier Arbeitspakete Identifikationsstrategien (AP1), Maschinelles Lernen (AP2), Implementierung empirischer Forschung (AP3) und einem open-source-Kompendium (AP4). AP1 macht moderne kausale empirische Strategien wie difference-in-differences oder regression discontinuity zugänglich für Bachelorstudierende. AP1 adressiert erfolgreiche prädiktive Verfahren wie decision und regression trees und random forests. AP3 widmet sich der Vermittlung von Kompetenzen zur reproduzierbaren Forschung. Hierzu gehören die Integration von Text und statistischer Analyse („RMarkdown“), interaktive Präsentation („Shiny“), Versionskontrolle („Github“) oder die Erstellung von Paketen. AP4 erstellt ein open source-Online Kompendiums (AP4), das die Inhalte des Moduls frei zugänglich veranstaltungsbegleitend, aber auch zum Selbststudium bereitstellt.
© 2024 Stiftung Innovation in der Hochschullehre, Treuhandstiftung in Trägerschaft der Toepfer Stiftung gGmbH
© 2024 Stiftung Innovation in der Hochschullehre,
Treuhandstiftung in Trägerschaft der Toepfer Stiftung gGmbH